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This then completes the development of P(r, kl, k2), 
and the integrals in equation (12) have been reduced 
to functions of the parameters which describe the scat- 
tering system. 

8. Summary 

Mathematical expressions for the equatorial intensity 
have been presented which involve the Fourier trans- 
form ef the fibril, interfibrillar interference function, 
and effects of lattice distortions in a quantitative man- 
ner. Also, allowances have been made for the effects 
of structural inhomogeneities by leaving the coherent 
size as a free parameter and allowing for the possibility 
of an additional scattering component due to associated 
electron-density fluctuations. One of the most impor- 
tant features of these equations is that the functional 
form of the Fourier transform of the fibril is known 
in the region 0 < k < k0 and involves only a single par- 
ameter, Re, which can be related to the radius of gyra- 
tion of the fibril. It is emphasized that this expression 
for the fibril is not a model but a modification of 
the Guinier approximation and holds very well for 
k<ko.  

Mathematical expressions for the low-resolution Pat- 
terson function have also been derived, and their ac- 
curacy has been demonstrated to be within a few per- 
cent. Techniques for the use of these expressions, along 
with a different approach, are presented in the next 
paper of this series, where lattice distortions and higher- 
resolution data are also considered. 

This research was supported by U.S. Public Health 
Service Grant AM02830. 
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Direct Evaluation of Kcq Fourier Coefficents in X-ray Profile Analysis 
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Using a least-squares method of analyzing X-ray diffraction profiles, it is shown that one can calculate 
directly the Fourier coefficients of the Ke~ component from the total K0c doublet intensities. These 
Fourier coefficients can be calculated around any preferred points of the profile, e.g. the center of grav- 
ity or peak of the profile of Ket. 

Introduction 

Fourier analysis of X-ray diffraction lines normally 
requires that the intensity be given for the Kel com- 
ponent alone. To this end a few methods of separating 
the K~ doublet have been proposed. The works of 

Brill (1928), Jones (1938) and Finch (1949) all assume 
that the K~I profile has a known functional form (e.g. 
Gaussian). This assumption is not valid in the case of 
line profiles taken from deformed materials (Warren, 
1960) where Fourier analysis is extensively used. Also, 
the assumption of Papoulis (1955) that the profile is 
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symmetrical does not hold for materials that contain 
twin or double layer stacking faults (Warren, 1960). 
The well-known graphical method of Rachinger (1948) 
to separate the doublet is not accurate enough for the 
high-angle side of the profile (Warren, 1960). Keating 
(1959) has shown how to calculate the Kel profile from 
the Kc~ doublet and recently Gangulee (1970) has shown 
how to calculate the Fourier coefficients of K~I, after 
the coefficients of the K~ doublet were determined. 

Here we show how one can evaluate the coefficients 
of the Kel profile directly from the experimental inten- 
sity profile eliminating the need of separating the Kcq 
profile from the Kc~2 profile or the need of calculating 
the coefficients of the doublet profile first. This method 
of evaluation also gives the Fourier coefficients of the 
Kel profile analyzed around its center of gravity (or 
any other preferred point). This is important where 
two sets of Fourier coefficients e.g. of an 'annealed 
profile' and a 'broadened profile' are used in a Stokes 
correction to determine the coefficients of the true dif- 
fraction profile (Warren, 1960). 

A recently developed least-squares-analysis method 
of computing the Fourier coefficients is employed; this 
method has been shown to have several important 
advantages over the normal Fourier transform method 
(Kidron & De Angelis, 1971). 

Method of analysis 

The Fourier-transform method 
The intensity of an X-ray diffraction profile, nor- 

malized to give an integrated intensity of unity, is given 
by a Fourier series 

C ~  

I(h)~_~ {Atcos2zdh+Btsin27~lh} (1) 
l=oo 

where h is the reciprocal space variable and l is the 
harmonic number. Usually the variable h is changed 
into a dimensionless variable j, where j = 0  coincides 
with the intensity maximum of the line (de Angelis, 
1965) or with its center of gravity. By this change of 
variables equation (1) can be transformed into (de An- 
gelis, 1965) 

I ( j ) = A o +  2Al cos .... 
/ = 1  q 

-t-2Bz sin2q/-j} (2) 

where q is the number (even) of intervals along the 
profile, and 

j 0 , =  + 1,+ 2,- . . . . .  , + [q/2)+ 1] 

A Fourier transformation of (2) gives the coefficients 
At, Bt. 

The least-squares method 
In the least-squares analysis (LSA) (Kidron & de 

Angelis, 1971) the Fourier coefficients are computed 
from a set of linear equations of the form 

p n = l , 2 , -  . . . . . . . . .  ,n (3) 
I (n )=  ~ Fk . C,, k 

k=l ' p = o d d .  

where I(n) are the experimental intensities at different 
points along the line profile. Fk and C,,k are related to 
the coefficients in equation (2) by 

f t = A 0  

Fk = 2 A t  for l=  1,2,---- p - 1  
2rc/j ' 2 

Cj,k = COS - -  
q 

and k = l+  1 

Ft, = 2Bt / for l=  1,2, p -  1 
2rdj ,  ' 2 

Cj,k=sin 
q 

Bo = 0, and is taken out of the equations (3). 

In the LSA the terms C,.k are first calculated in the 

form of Cl.k with j =  0, + 1,- . . . . . . . . . . .  , + ( q  + 1 ) ;  

j = 0 being the center of gravity (centroid) of the profile. 
Then Cl,k are rearranged and written in the form Cn,k 
with n = 1,2,- . . . . . . . . .  , m where m = q + 1 and where 
n =  1 corresponds to the first non-zero intensity point 
on the low-angle side of the profile, and n = m  is the 
last non-zero intensity point on the high-angle side of 
the profile. 

The calculation of Fk in (3) by the LSA will give then 
the Fourier coefficients of the profile around its center 
of gravity. 

Fourier coefficients of  the Koq component: 
In evaluating the Fourier Coefficients of the K~I 

profile the following assumptions are employed: 
(a) The shapes of the K~.I profile (11) and of the Kc~z 

profiile (12) are the same. 
(b) The ratio R of the integrated intensity of 11 to 

that of the doublet profile I is known. 
(c) The separation between the centers of gravity of 

11 and/2  is also known. 
For filtered radiation R is usually 2_ and the angular 

separation between /1 and I2 is given by the relative 
change in wavelength. Nothing is assumed here con- 
cerning the shape of the line (symmetrical, Gaussian, 
etc.) and also the experimental data can be taken at 
arbitrary intervals, as long as these intervals are small 
enough to adequately depict the shape of the profile. 

Because of assumption (a) the profiles/1 and 12 will 
have the same Fourier coefficients except for a normal- 
ization factor, when calculated around the centers of 
gravity of the respective lines. If s is the separation be- 
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tween the centers o f  gravi ty o f  l~(n) and  I2(n) then their  
normal ized  profiles can be wri t ten as: 

P 

11(n)=12(n+s)=~Fk.  Cn.k n = l , 2  . . . .  , (r--s) (4) 
k = l  

where Fk are the Four ier  coefficients o f  Ii(n) above,  
and  n = 1,2 . . .  r giving the to ta l  span o f  the double t .  
The  to ta l  observed profile will be 

I(n) = RIl(n) + (1 - R)I2(n + s) (5) 

which accord ing  to (4) can be wri t ten as 

where 

and  

P 

I ( n ) =  ~ F k.C'~, k n = 1 , 2 ,  . . .  
k----1 

C~.k=RC,.k +(1-R)Cn_~ . ,  

C , , . k - ~ 0 o n l y f o r  r- -s> n>_ l . ] 

(6) 

The  set o f  equat ions  (6) is s imilar  to the set needed 
in the LSA and  given in (3) except tha t  in (6) Fk are the 
Four ie r  coefficients o f  the Kcq profile I~(n) alone.  The  
actual  ca lcu la t ion  o f  Fk involves now the eva lua t ion  o f  
C,,,k and  then  a LSA of  equat ions  (6). 

To  check the whole  procedure  an ' exper imenta l '  
doub le t  was generated.  This  consis ted of  two Gauss ian  
(exp {-kZx2}) profiles which were made  del iberately 
asymmetr ic  by tak ing  k = 0 . 1 5  on  the left side and  
k = 0 . 1 0  on  the right.  The  ra t io  R=I~/I  was taken  as 
0.67 and  the doub le t  separa t ion  was s =  15. The  to ta l  
profi le was fed in to  a LSA compu te r  p r o g r a m  writ ten 
to pe r fo rm the compu ta t ions  as given be equat ions  (4) 
to (6). 

The result ing Four ier  coefficients o f  the K ~  com- 
ponen t  are given in Table  1 together  with the actual  
Four ie r  coefficients ca lcula ted directly f rom the K ~  
profi le  (11) alone.  Not ice  tha t  bo th  sets o f  results 
ma tch  perfectly up to the four th  decimal  place except 
in four  (out  o f  50) cases where there is a difference o f  
0.0001. 

Table  1. The Fourier coefficients of  K ~  component I~ 
calculated from the input of  ll alone, and from the input 

ofl=Ii+~ 
Harmonic 
number Calculated from 11 Calculated from I 

l Az B~ A~ Bz 
0 1"0000 0"0000 1"0000 0"0000 
1 0"9450 -0"0083 0"9450 -0"0083 
2 0-7975 -0"0237 0"7975 -0"0237 
3 0"6011 --0"0461 0"6011 -0"0461 
4 0"4040 -0"0675 0"4040 -0"0675 
5 0"2403 -0"0791 0"2403 -0"0791 
6 0"1235 -0"0772 0"1235 -0"0772 
7 0"0509 -0"0646 0"0509 -0"0646 
8 0"0119 -0"0473 0"0119 -0"0473 
9 --0"0056 -0"0308 -0-0056 -0"0308 

Table  1 (cont.) 

Harmonic 
number Calculated ~om 11 

/ Az Bt 
10 -0.0112 -0.0180 
11 -0.0112 -0.0095 
12 -0.0093 -0.0045 
13 -0.0072 -0.0017 
14 -0.0054 -0.0003 
15 -0.0041 0.0004 
16 -0.0031 0.0007 
17 -0.0023 0.0009 
18 -0.0018 0.0009 
19 -0.0014 0-0009 
20 -0.0011 0-0009 
21 -0.0008 0.0009 
22 -0.0006 0"0008 
23 -0.0004 0.0007 
24 -0.0003 0.0007 
25 -0"0002 0"0006 

Calculated from I 
At Bt 

-0-0112 -0.0180 
-0.0112 -0.0095 
-0.0093 -0.0044 
-0.0072 -0.0017 
-0.0054 -0.0003 
-0.0040 0.0004 
-0-0031 0.0007 
-0.0023 0.0008 
-0.0018 0.0009 
-0.0014 0-0009 
-0.0011 0.0009 
-0.0008 0.0008 
-0.0006 0.0008 
-0.0004 0-0007 
--0"0003 0-0007 
--0"0002 0"0006 

The  compu ted  Four ie r  coefficients were also used to 
calculate back  synthesized I(n) and  ll(n) profiles. This  
is given in Table  2 together  wi th  the input  values for  
every second point .  We see tha t  the agreement  is bet ter  
than  0.001. 

Table  2. The input profiles and the profiles calculated 
back from the Fourier coefficients of  &(n) 

The total profile I(n) The total profile Ii(n) 
n Input Back calculated Input Back calculated 

2 0.0000 0.0000 0.0000 0-0001 
4 0.0000 -0-0001 0.0000 -0.0001 
6 0-0001 0.0002 0-0001 0.0002 
8 0.0007 0.0006 0.0007 0.0006 

10 0.0032 0.0032 0.0032 0-0033 
12 0.0121 0.0121 0-0122 0.0121 
14 0.0392 0.092 0-0392 0-0392 
16 0.1054 0.1054 0.1054 0-1054 
18 0.2369 0.236S 0.2369 0.2368 
20 0.4449 0.4450 0-4449 0.4451 
22 0.6978 0.6975 0.6977 0.6973 
24 0.9147 0.9152 0.9139 0.9145 
26 1.0003 1.0003 1.0000 1-0000 
28 0.9719 0.9713 0.9608 0.9602 
30 0.8850 0.8855 0.8521 0.8525 
32 0.7785 0.7781 0.6977 0.6975 
34 0.6933 0.6936 0.5273 0.5274 
36 0.6528 0.6525 0.3679 0.3679 
38 0.6453 0.6455 0.2369 0.2369 
40 0.6297 0.6292 0-1409 0-1409 
42 0.5723 0.5728 0.0773 0.0772 
44 0.4961 0.4959 0.0392 0.0393 
46 0.4077 0.4078 0.0183 0.0182 
48 0.3142 0.3142 0.0079 0.0080 
50 0.2256 0.2256 0.0031 0.0030 
52 0.1503 0.1502 0.0012 0.0013 
54 0.0927 0.0927 0.0004 0.0003 
56 0.0528 0-0528 0.0001 0.0002 
58 0"0278 0-0278 0"0000 0"0000 
60 0"0135 0"0135 0"0000 0"0000 
62 0"0061 0"0061 0"0000 0-0000 
64 0"0025 0"0025 0"0000 0"0000 
66 0.0010 0-0019 0.0000 0.0~00 
68 0"0003 0"0003 0"0000 0"0000 
70 0"0001 0"0001 0.0000 0.0000 
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The same calculations were performed for a doublet 
made out of two symmetric Gaussian profiles (k = 0.15 
both for left side and right side). The matching of the 
results was as above. This time the sine Fourier co- 
efficients had to come out as zero, and in fact, in both 
eases, they were smaller than 10 -4. This also means 
that the Fourier coefficients of ll(n) were calculated 
around the center of gravity even when the input data 
was that of l(n) where I(n)=Ii(n)+ 12(n). 

In the present work we assumed that R=I1/ I  was 
known. However, R can be easily calculated. It has 
been shown (Gangulee, 1970) that R can be determined 
by defining a 'residue' by 

Residue = ~ II~ (n)l - I'n (n) 
n-~ l  

where Ii(n ) is the synthesized Ii(n ) profile assuming a 
given value of R. This 'residue' will be minimum for 
the correct value of R. The 'experimental' profile was 
calculated using R=0.67. Then the profile 11(n) was 
calculated using different values of R and the corre- 
sponding 'residues' were determined• The plot of the 

'residue' versus R had a minimum (residue = 0) at R = 
0.67 which is the true value of R. 

Research was sponsored by the Office of Aerospace 
Research, United States Air Force, under Contract 
F33 615-69-C 1027. 
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The Moments of a Powder Diffraction Profile in the Kinematic Tangent-Plane Approximation 
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The nth moment of the diffraction line profile of a small or imperfect crystal is obtained in terms of the 
derivatives of V(t), the volume common to the crystal and its 'ghost' displaced by a distance t parallel 
to the scattering vector, and of J(t)- iK(t) ,  the mean value of the product FF* of the structure factors of 
unit cells separated by the same translation. The expression takes the form of a series that can be carried 
to any desired degree of approximation; previously only the first two or three terms had been obtained. 
For particle-size broadening by crystals of certain simple shapes the series terminates, giving an 'exact' 
expression. 

Introduction 

The intensities, positions, widths, asymmetries, . . .  of 
diffraction maxima in crystallography have been spe- 
cified by such measures as peak height, peak position, 
width at half height, ratio of the intercepts of the chord 
at half height by the perpendicular through the peak, 
• .. and other ad hoc constructs. In mathematics, and 
particularly statistics, however, the use of the moments 
of the distribution as measures of its properties is more 
common. Moments have in fact been used as measures 
of the effect of geometrical aberrations since the work 

* Permanent address: Department of Physics, University of 
Birmingham, Birmingham B 15 2TT, England. 

of Spencer (1931), but their use as measures of the 
properties of diffraction profiles is comparatively re- 
cent, since the 'tails' of these profiles approach zero 
approximately as the inverse square of the distance 
from the centre of the profile, so that the zeroth mo- 
ment (integrated intensity) is convergent, the first mo- 
ment (centroid position) is convergent by reasonable 
convention, and all other moments diverge. Tournarie 
(1956 a, b), however, investigated the manner of diver- 
gence of the second moment (variance), and showed 
that the second moment of a deliberately truncated 
portion of the powder diffraction maximum was directly 
proportional to the length of the truncated portion, the 
proportionality factor being inversely proportional to 
the mean crystallite size of the specimen. To the degree 


